High-resolution magnetization-prepared 3D-FLAIR imaging at 7.0 Tesla.

نویسندگان

  • Fredy Visser
  • Jaco J M Zwanenburg
  • Johannes M Hoogduin
  • Peter R Luijten
چکیده

The aim of the present study is to develop a submillimeter volumetric (three-dimensional) fluid-attenuated inversion recovery sequence at 7T. Implementation of the fluid-attenuated inversion recovery sequence is difficult as increased T(1) weighting from prolonged T(1) constants at 7T dominate the desired T(2) contrast and yield suboptimal signal-to-noise ratio. Magnetization preparation was used to reduce T(1) weighting and improve the T(2) weighting. Also, practical challenges limit the implementation. Long refocusing trains with low flip angles were used to mitigate the specific absorption rate constraints. This resulted in a three-dimensional magnetization preparation fluid-attenuated inversion recovery sequence with 0.8 x 0.8 x 0.8 = 0.5 mm(3) resolution in a clinically acceptable scan time. The contrast-to-noise ratio between gray matter and white matter (contrast-to-noise ratio = signal-to-noise ratio [gray matter] - signal-to-noise ratio [white matter]) increased from 12 +/- 9 without magnetization preparation to 28 +/- 8 with magnetization preparation (n = 12). The signal-to-noise ratio increased for white matter by 13 +/- 6% and for gray matter by 48 +/- 15%. In conclusion, three-dimensional fluid-attenuated inversion recovery with high resolution and full brain coverage is feasible at 7T. Magnetization preparation reduces the T(1) weighting, thereby improving the T(2) weighted contrast and signal-to-noise ratio.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Contrast 3D-TSE, T2w and FLAIR imaging at 7.0 Tesla

Introduction: Multi slice T2w-TSE and FLAIR-TSE sequences are two of the most important techniques in neuro-radiology. The problem of partial volume effects and inherent CSF-inflow artifacts in FLAIR can be resolved by using a non-selective 3D-TSE acquisition technique with advanced refocusing pulse angle sweep [1]. A disadvantage of 3D TSE sequences with isotropic voxel size smaller than 1mm i...

متن کامل

Ultrahigh-Field MRI in Human Ischemic Stroke – a 7 Tesla Study

INTRODUCTION Magnetic resonance imaging (MRI) using field strengths up to 3 Tesla (T) has proven to be a powerful tool for stroke diagnosis. Recently, ultrahigh-field (UHF) MRI at 7 T has shown relevant diagnostic benefits in imaging of neurological diseases, but its value for stroke imaging has not been investigated yet. We present the first evaluation of a clinically feasible stroke imaging p...

متن کامل

3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions.

Cortical lesions are prevalent in multiple sclerosis but are poorly detected using MRI. The double inversion recovery (DIR) sequence is increasingly used to explore the clinical relevance of cortical demyelination. Here we evaluate the agreement between imaging sequences at 3 Tesla (T) and 7T for the presence and appearance of individual multiple sclerosis cortical lesions. Eleven patients with...

متن کامل

Comparison of the added value of contrast-enhanced 3D fluid-attenuated inversion recovery and magnetization-prepared rapid acquisition of gradient echo sequences in relation to conventional postcontrast T1-weighted images for the evaluation of leptomeningeal diseases at 3T.

BACKGROUND AND PURPOSE The usefulness of contrast-enhanced 3D T2-FLAIR MR imaging for the evaluation of leptomeningeal diseases has not been systematically investigated. The purpose of this study was to assess the value added by contrast-enhanced 3D T2-FLAIR and MPRAGE sequences to conventional postcontrast T1-weighted images in the evaluation of leptomeningeal diseases. We also undertook in vi...

متن کامل

Visualization of the aneurysm wall: a 7.0-tesla magnetic resonance imaging study.

BACKGROUND Risk prediction of rupture of intracranial aneurysms is poor and is based mainly on lumen characteristics. However, characteristics of the aneurysm wall may be more informative predictors. The limited resolution of currently available imaging techniques and the thin aneurysm wall make imaging of wall thickness challenging. OBJECTIVE To introduce a novel protocol for imaging wall th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 64 1  شماره 

صفحات  -

تاریخ انتشار 2010